International Conference on Research Reactors: Safe Management and Effective Utilization Rabat, 14 – 18 November 2011

Safe Operation of Research Reactors in Germany

M. Schneider, B. Fischer Federal Office for Radiation Protection Germany

Verantwortung für Mensch und Umwelt

1

Outline

- 1. Introduction to the Use of Nuclear Energy in Germany
- 2. Legislative and Regulatory Framework
- 3. Operation of Research Reactor Facilities
- 4. Conclusion

Introduction

- 1957: Research Reactor Munich (FRM) reached criticality
- In total: 46 research reactors (RR)
- 1998: Germany decided to phase out of nuclear power
- 2002: Amendment of the Atomic Energy Act "Phase out the use of nuclear energy for the commercial generation of electricity"
 > Refers to NPP, not to RR
- Actually: No change to RR by subsequent amendments of the Atomic Energy Act in 2010 and 2011
 - Safe operation of RR in Germany still has to be assured for a longer time in the future

Legislative and Regulatory Framework

- Legal level: Atomic Energy Act and associated ordinances
 → Directly binding to all kind of nuclear facilities, including RR
- Sublegal level: Nuclear Safety Regulations
 - \rightarrow Mainly developed for NPP
 - → Applied by analogy for RR, in accordance with the potential hazard of the specific facility by means of a graded approach
- Operator has prime responsibility for safe operation
 - \rightarrow Operation license is granted unlimited in time
 - \rightarrow Safe operation over the entire lifetime
 - \rightarrow Safety reviews and safety upgrades

Safety Reviews and Safety Upgrades

- Safety upgrades in a licensing procedure (§ 7 Atomic Energy Act)
 - Essential modification of installation or its operation
 - Licence granted by the licensing authority
 - Necessary precautions against damage according to the state of the art in science and technology
 - Demonstrated by safety analyses of the operator and reviewed by licensing authority and authorized experts
- Safety upgrades within continuous regulatory supervision
 - Approval by the supervisory authority
 - Based on a safety analysis and its review

General Safety Reviews

- Periodic Safety Reviews (PSR)
 - Mandatory for NPP, but not for RR
 - Required for specific facilities, e.g. FRM-II or BER II
- Additional safety reviews in special circumstances
 - After Fukushima accident
 - Systematic plant specific safety reviews for all 17 NPP
 - Performed by Reactor Safety Commission (RSK)
 - Especially against severe accidents
 - Review results, among others, basis for the phase out policy concerning NPP in Germany in 2011
 - Recently, systematic plant specific safety reviews have also been started for RR → FRM-II, BER II and FRMZ

Research Reactor Facilities in Germany

- In total 46 RR
- Broad range of different types
 - Large pool or tank reactors, P_{th} several tens of megawatts
 - Small educational reactors, "zero power"
- Actually
 - 38 permanently shut down, in decommissioning or already dismantled and released from regulatory control
 - 8 still in operation
 - \rightarrow 3 "larger" facilities: FRM-II, BER II and FRMZ
 - \rightarrow 5 "smaller" educational reactors: e.g. AKR

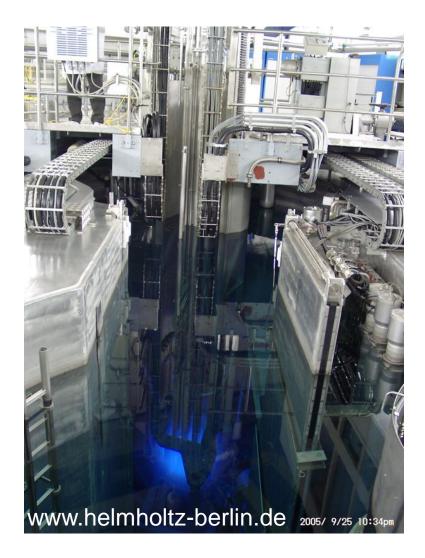
FRM-II – Munich High-flux Neutron Source

- Newest RR in Germany
- First criticality in 2004
- Replaced the old FRM, called "Atomic Egg"

FRM-II: Plant Characteristics

- High-flux neutron source: $\Phi_{th} \approx 8.10^{14} \text{ n/(cm^2 \cdot sec)}$
- Thermal power: 20 MW
- Pool type, light water cooled, heavy water moderated
- Compact core with a single cylindrical fuel element
 - Actually HEU in a U₃Si₂-AI dispersion fuel
 - To be converted to MEU (\leq 50 % U 235) by end of year 2018
- Designed to withstand
 - earthquake
 - high speed military aircraft

FRM-II: General Safety Reviews


- Periodic Safety Review
 - Fixed as an obligation in the operation licence from 2 May 2003
 - First safety review in 2015
 - 10 years after beginning of routine operation in 2005
- Additional safety review due to Fukushima accident
 - Recently started by RSK
 - Especially against severe accident scenarios

| Verantwortung für Mensch und Umwelt |

BER II – Berlin Experimental Reactor Unit II

- Pool reactor
- Light water cooled and moderated
- First criticality in 1973
- Thermal power: 10 MW
- Φ_{th} ≈ 1,5·10¹⁴ n/(cm²·sec)
- Reactor core
 - 30 MTR fuel elements
 - U₃Si₂-Al dispersion fuel
 - LEU

BER II: Power Uprate

- 1985 to 1991: Power Uprate from 5 MW to 10 MW
- Licensing procedure (§ 7 Atomic Energy Act)
 - Involving of public, including public hearing
 - 2 partial licenses for the construction work in 1985 and 1988
 - 1 operation license in 1991
- Safety Assessment (according to the state of the art in science and technology)
 - Overall safety concept
 - Reactor core
 - Core cooling system
 - Reactor protection system
 - Installation of a cold neutron source

BER II: Conversion from HEU to LEU

- Reducing proliferation risk
- Licensing procedure (§ 7 Atomic Energy Act)
 - Essential modification of installation or its operation
- Safety Assessment (according to the state of the art in science and technology)
 - Safety analysis for comparison of source terms for HEU and LEU core
 - Severe accident by a postulated crash of a military aircraft
 - No significant differences to the radiological impact on the environment
- Operation licence in 1994
- Following mixed loadings, first pure LEU core in 2000

BER II: General Safety Reviews

- Periodic Safety Review
 - Fixed by a provision in the operating manual
 - First safety review completed in 2004 Including - Update of plant description
 - Assessment of operating experience
 - New accident analysis
 - → Improved measures in irradiation devices including documentation
- Additional safety review due to Fukushima accident
 - Recently started by RSK
 - Especially against severe accident scenarios

| Verantwortung für Mensch und Umwelt |

FRMZ – Research Reactor of the Mainz University

- TRIGA reactor Mark II
- Light water cooled and moderated
- First criticality in 1965
- Thermal power: 100 kW
- Pulsed operation: Peak 250 MW
- Reactor core
 - 60 homogenous fuel moderator elements
 - uranium as fuel and zirconium hydride as moderator
 - LEU

FRMZ: Safety Upgrade

- Large safety upgrade of the reactor water systems in the beginning of the 1990s
- Licensing procedure (§ 7 Atomic Energy Act)
 - Essential modification of installation or its operation
- Safety Assessment (according to the state of the art in science and technology)
 - Reconstruction of primary and secondary circuits
 - Reconstruction of condenser between primary and secondary circuit
 - Implementation of own cleaning circuit, hence separated from primary circuit
 - Modifying electronic systems for measuring and control
- Operation licence in 1992

FRMZ: General Safety Reviews

- Periodic Safety Review
 - Mandatory for NPP, but not for RR
 - Not required for FRMZ
- Additional safety review due to Fukushima accident
 - Recently started by RSK
 - Especially against severe accident scenarios

AKR – Training Reactor of the Technical University Dresden

- Zero power reactor
- Example for 5 training and educational reactors still in operation

<u>AKR-1</u>

- Commissioned in 1978

<u>AKR-2</u>

- Complete refurbishment of AKR-1
- Recommissioned in 2005

Verantwortung für Mensch und Umwelt

AKR: Plant Characteristics

- Thermal power: 2 W
- Cylindrical core
 - Disk-shaped fuel elements
 - Homogenous dispersion of uranium as fuel and polyethylene as moderator
 - LEU
 - 2 separate cylindrical sections with subcritical mass
 - Operation by lifting up lower section
- No cooling necessary and inherent safety features
 Ideal tool for training and educational purposes

AKR-1: History

- Sited in Dresden
 - Build, commissioned and operated within the legislative and regulatory framework of the former GDR
- Safety Review in 1989 after 10 years of operation
 - Including all operational and safety systems and of the reactor administration procedures
 - Licence renewed unlimited in time
- Reunification in Germany in 1990
 - Atomic Energy Act of the Federal Republic of Germany
 - New § 57a: Licenses from the former GDR expires on 30 June 2005
 - → New license according to § 7 of the Atomic Energy Act

AKR-2: Complete Refurbishment of AKR-1

- Licensing procedure started in 1998 (§ 7 Atomic Energy Act)
- Safety Review (according to the state of the art in science and technology)
 - Extensive refurbishment of facility is necessary
 - Reactor building, auxiliary systems, and instrumentation and control equipment
- Licence granted in March 2004
- Reconstruction from April to December 2004
 - Construction works at the reactor building
 - New installation of electrical systems and room ventilation
 - Modernization of the entire instrumentation and control system
- Recommissioning March 2005

Conclusion

- ✓ Five decades of safe operation of RR
- Phase out the use of nuclear energy just for NPP, but not for RR
- Safe operation of RR in Germany still has to be assured for a longer time in the future

Verantwortung für Mensch und Umwelt